Preparation, Microstructure Evolutions, and Mechanical Property of an Ultra-Fine Grained Mg-10Gd-4Y-1.5Zn-0.5Zr Alloy

نویسندگان

  • Huan Liu
  • Jia Ju
  • Jing Bai
  • Jiapeng Sun
  • Dan Song
  • Jingli Yan
  • Jinghua Jiang
  • Aibin Ma
چکیده

In this work, the microstructural evolutions and mechanical properties of an as-cast Mg-10Gd-4Y-1.5Zn-0.5Zr (wt %) alloy during successive multi-pass equal channel angular pressing (ECAP) were systematically investigated by X-ray diffractometer, scanning electron microscopy, transmission electron microscopy, and compression test. The obtained results show that the microstructure of as-cast alloy consists of α-Mg grains, Mg3Gd island phase, few Y-rich particles, and lamellar 14H LPSO (long period stacking ordered) phase located at the grain boundaries. During ECAP, the Mg3Gd-type phase is crushed and refined gradually. However, the refined Mg3Gd particles are not distributed uniformly in the matrix, but still aggregated at the interdendritic area. The 14H phase becomes kinked during the early passes of ECAP and then broken at the kinking bands with more severe deformation. Dynamic recrystallization of α-Mg is activated during ECAP, and their average diameter decreases to around 1 μm, which is stabilized in spite of increasing ECAP passes. Moreover, nano-scale γ′ phases were dynamically precipitated in 16p ECAP alloy. Compression tests indicate that 16p ECAP alloy exhibits excellent mechanical property with compressive strength of 548 MPa and fracture strain of 19.1%. The significant improvement for both strength and ductility of deformed alloy could be ascribed to dynamic recrystallization (DRX) grains, refined Mg3Gd-type and 14H particles, and dynamically precipitated γ′ plates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Cross-Rolling Process on Nanostructure of Al 1050 Alloy

The cross-rolling is a new process that results in significant evolutions in microstructure of the metallic sheets. In this study, an aluminium 1050 sheet was rolled up to 95% reduction in cross directions for ten passes. The rolled samples were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The rolled samples possess a high dislocation density and ultra-fin...

متن کامل

A study on the sub-structure and mechanical properties of friction stir processed AA 6061-T6 joints with ultra-fine grained structure

Ultra-fine grained (UFG) structure (~0.6 µm) was produced in the stir zone (SZ) of 6061-T6 aluminum alloy joints using friction stir processing (FSP) cooled by liquid nitrogen (N2). A new experimental set-up was used to simultaneously quench the lower and upper surfaces of the samples during the processing. In addition, FSPed joints, using a steel backing plate, were produced at room temperatur...

متن کامل

Ultra-Fine Grained Dual-Phase Steels

This paper provides an overview on obtaining low-carbon ultra-fine grained dual-phase steels through rapid intercritical annealing of cold-rolled sheet as improved materials for automotive applications. A laboratory processing route was designed that involves cold-rolling of a tempered martensite structure followed by a second tempering step to produce a fine grained aggregate of ferrite and ca...

متن کامل

The Effect of Controlled Thermo Mechanical Processing on the Properties of a High Strength Steel

In this paper, an ultra low carbon High Strength Low Alloy Grade Steel was subjected to a two-step forging process and this was followed by different post cooling methods. The highest strength was obtained at a faster cooling rate due to the highly dislocated acicular ferrite structure with the fine precipitation of microalloying carbides and carbonitrides. At a slow cooling rate, the strength ...

متن کامل

Enhancing the low cycle fatigue strength of AA6061 aluminum alloy by using the optimized combination of ECAP and precipitation hardening

In the present study, mechanical properties and low cycle fatigue behavior of a solid-solutionized AA6061 aluminum alloy produced by equal channel angular pressing (ECAP) process were investigated. The grain refinement after two passes of ECAP significantly increased the yield stress and ultimate tensile stress and decreased the ductility of the alloy. However, the improvement of low cycle fati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017